Sum of Squares: Part 2

Apoorv Vikram Singh

February 17, 2021

Recall MaxCut

- Given: $G=(V, E)$.
- Goal: Find $S \subseteq V$, such that $|E(S, \bar{S})|$ is maximized

Approximation Algorithm for MaxCut

Algorithm: Return a random cut.
In expectation: Algorithm cuts half the edges.
MaxCut $\leq|E|$.
Therefore, it is a $\frac{1}{2}$-approximation algorithm.

Can we improve the $1 / 2$-approximation?

- Question: Is there an LP-based algorithm that achieves $(0.5+\varepsilon)$-approximation algorithm?
- Answer: There does not exist a $2^{n^{\delta}}$ size LP that gets $(0.5+f(\delta))$-approximation [CLRS16].
[Goemans-Williamson, 1994] Gave a 0.878 -approximation algorithm for MaxCut (based on SDP).

Goal Today

- $G=(V, E)$, and let $\operatorname{Opt}(G)=\operatorname{MaxCut}(G)$.
- $f_{G}(\boldsymbol{x})=\frac{1}{4} \sum_{(i, j) \in E}\left(\boldsymbol{x}_{i}-\boldsymbol{x}_{j}\right)^{2}$, for $x \in\{-1,1\}^{n}$.
- $\max _{x \in\{-1,1\}^{n}} f_{G}(x)=\operatorname{MaxCut}(G)$.

Theorem (0.878 Theorem)
For all G,

$$
\frac{O p t(G)}{0.878}-f_{G}(\boldsymbol{x})
$$

has a degree-2 SoS certificate.

To prove the theorem, we will prove a "rounding" theorem.
Theorem (Rounding Theorem)
Let μ be a degree-2 pseudo-distribution on $\{-1,1\}^{n}$. Then, there is an actual distribution μ^{\prime} such that

$$
\underset{\mu^{\prime}}{\mathbb{E}} f_{G}(\boldsymbol{x}) \geq 0.878 \tilde{\mathbb{E}}_{\mu} f_{G}(\boldsymbol{x}) .
$$

- Rounding: Takes pseudo-distribution to actual distribution.

Rounding Theorem $\Longrightarrow 0.878$ Theorem

Proof.
Suppose $\frac{\operatorname{Opt}(G)}{0.878}-f_{G}(\boldsymbol{x})$ is not SoS_{2}, then,
. \exists a degree- 2 p.d. μ such that $\tilde{\mathbb{E}}_{\mu}\left(\frac{\operatorname{Opt}(G)}{0.878}-f_{G}(\boldsymbol{x})\right)<0$.

- Rearranging: $\tilde{\mathbb{E}}_{\mu} f_{G}>\frac{\operatorname{Opt}(G)}{0.878}$.
. Rounding Theorem $\Longrightarrow \exists$ a distribution μ^{\prime}, such that,

$$
\underset{\mu^{\prime}}{\mathbb{E}} f_{G} \geq 0.878 \tilde{\mathbb{E}}_{\mu} f_{G}(\boldsymbol{x})>\operatorname{Opt}(G)
$$

. $\mathbb{E}_{\mu^{\prime}} f_{G}>\operatorname{Opt}(G)$, contradiction.

Interpreting Rounding Theorem

Suppose we have a p.d. μ, and under this p.d., $\tilde{\mathbb{E}}_{\mu} f_{G}(\boldsymbol{x})=\mathrm{Opt}_{\mathrm{SoS}_{2}}$.
. We are interested in finding such cuts, or, if there are such cuts.
. Find distribution μ^{\prime}, such that $\mathbb{E}_{\mu^{\prime}} f_{G}(\boldsymbol{x})$ is as large as possible. We won't be able to prove it is equal, but we can prove

$$
\underset{\mu^{\prime}}{\mathbb{E}} f_{G}(\boldsymbol{x}) \geq 0.878 \mathrm{Opt}_{\mathrm{SoS}_{2}}
$$

. $\mu \rightarrow \mu^{\prime}$ will be efficient \Longrightarrow algorithm to approximate MaxCut.

Proving Rounding Theorem

Ideally:
Given p.d. μ, find distribution μ^{\prime} over $\{-1,1\}^{n}$, such that

$$
\underset{\mu^{\prime}}{\mathbb{E}}(1, \boldsymbol{x})^{\otimes 2}=\tilde{\mathbb{E}}_{\mu}(1, \boldsymbol{x})^{\otimes 2}
$$

This is called: Generalized Moment Problem.
. Not possible, otherwise we would have solved MaxCut exactly.

But, we can do it over \mathbb{R}^{n}

Lemma (Gaussian Sampling)

For any degree-2 p.d. μ, there exists an actual distribution over \mathbb{R}^{n} with same first and second moments.

Proof.
For any p.d. μ of degree-2,

$$
\tilde{\mathbb{E}}_{\mu} \boldsymbol{x} \boldsymbol{x}^{\top} \succcurlyeq 0 .
$$

. First Moment: $\tilde{\mathbb{E}}_{\mu} \boldsymbol{x}$.
Second Moment: $\tilde{\mathbb{E}}_{\mu} \boldsymbol{x} \boldsymbol{x}^{\top}$.
Sample: $\boldsymbol{g} \sim \mathcal{N}\left(\tilde{\mathbb{E}}_{\mu} \boldsymbol{x}, \tilde{\mathbb{E}}_{\mu} \boldsymbol{x} \boldsymbol{x}^{\top}\right)$.

$\mathrm{W} \log \tilde{\mathbb{E}}_{\mu} \boldsymbol{x}=\mathbf{0}$

. If μ was an actual distribution, then $\boldsymbol{x} \sim \mu$, and output $+\boldsymbol{x}$ or $-\boldsymbol{x}$ uniformly.
Second Moment $\tilde{\mathbb{E}}_{\mu} \boldsymbol{x} \boldsymbol{x}^{\top}$ remains unchanged.
Mean $=\mathbf{0}$.
Look at the p.d. with mean $\mathbf{0}$ and second moment $\tilde{\mathbb{E}}_{\mu} \boldsymbol{x} \boldsymbol{x}^{\top}$. The value of $\tilde{\mathbb{E}}_{\mu} f_{G}$ remains unchanged.

$$
\begin{aligned}
f_{G}(\boldsymbol{x}) & =\frac{1}{4} \sum_{(i, j) \in E}\left(\boldsymbol{x}_{i}-\boldsymbol{x}_{j}\right)^{2} \\
& =\frac{1}{4} \sum_{(i, j) \in E}\left(2-2 \boldsymbol{x}_{i} \boldsymbol{x}_{j}\right) \\
\Longrightarrow \tilde{\mathbb{E}}_{\mu} f_{G}(\boldsymbol{x}) & =\frac{1}{4} \sum_{(i, j) \in E}\left(2-2 \tilde{\mathbb{E}}_{\mu} \boldsymbol{x}_{i} \boldsymbol{x}_{j}\right) .
\end{aligned}
$$

Efficient Algorithmic Process

$$
\text { Recall: } \quad \boldsymbol{g} \sim \mathcal{N}\left(\mathbf{0}, \tilde{\mathbb{E}}_{\mu} x \boldsymbol{x}^{\top}\right) .
$$

. $\mu \rightarrow \boldsymbol{g}$, such that $\tilde{\mathbb{E}}_{\mu} \boldsymbol{x} \boldsymbol{x}^{\top}=\mathbb{E} \boldsymbol{g} \boldsymbol{g}^{\top}$.
. Issue: \boldsymbol{g} does not have entries in $\{ \pm 1\}$.
Efficient Algorithmic Process,

1. Take $\boldsymbol{g} \sim \mathcal{N}\left(\mathbf{0}, \tilde{\mathbb{E}}_{\mu} \boldsymbol{x} \boldsymbol{x}^{\top}\right)$.
2. $\hat{\boldsymbol{x}}_{i}=\operatorname{sign}\left(\boldsymbol{g}_{i}\right)$, which gives that $\hat{\boldsymbol{x}} \in\{-1,1\}^{n}$.

Call μ^{\prime} the distribution on $\hat{\boldsymbol{x}}$.

Claim (Rounding Theorem)
$\mathbb{E}_{\mu^{\prime}} f_{G}(x) \geq 0.878 \tilde{\mathbb{E}}_{\mu} f_{G}(x)$.
Lemma (Sheppard's Lemma)

$$
\mathbb{P}\left[\operatorname{sign}\left(\boldsymbol{g}_{i}\right) \neq \operatorname{sign}\left(\boldsymbol{g}_{j}\right)\right] \geq \frac{2 \arccos (\rho)}{\pi(1-\rho)} \mathbb{E}\left(\boldsymbol{g}_{i}-\boldsymbol{g}_{j}\right)^{2},
$$

for $\rho=\tilde{\mathbb{E}}_{\mu} \boldsymbol{x}_{i} \boldsymbol{x}_{j}=\mathbb{E} \boldsymbol{g}_{i} \boldsymbol{g}_{j}$.
Remark(s): Comparing LHS and RHS of claim with lemma.
$\cdot \underset{\mu^{\prime}}{\mathbb{E}} f_{G}(\boldsymbol{x})=\frac{1}{4} \sum_{(i, j) \in E^{\prime}} \underset{\mu^{\prime}}{\mathbb{E}}\left(\hat{\boldsymbol{x}}_{i}-\hat{x}_{j}\right)^{2}=\sum_{(i, j) \in E} \mathbb{P}\left[\operatorname{sign}\left(\boldsymbol{g}_{i}\right) \neq \operatorname{sign}\left(\boldsymbol{g}_{j}\right)\right]$.
$\cdot \tilde{\mathbb{E}}_{\mu} f_{G}(\boldsymbol{x})=\frac{1}{4} \sum_{(i, j) \in E} \tilde{\mathbb{E}}_{\mu}\left(\boldsymbol{x}_{i}-\boldsymbol{x}_{\boldsymbol{j}}\right)^{2}=\frac{1}{4} \sum_{(i, j) \in E} \mathbb{E}\left(\boldsymbol{g}_{i}-\boldsymbol{g}_{j}\right)^{2}$.

Sheppard's Lemma \Longrightarrow Rounding Theorem

Proof.

$$
\min _{\rho \in[-1,1]} \frac{2 \arccos (\rho)}{\pi(1-\rho)} \geq \underbrace{\alpha_{G W}}_{=0.878 \ldots}, \quad(\min \text { at } \rho=-0.69) .
$$

This implies

$$
\begin{aligned}
\frac{1}{4} \underset{\mu^{\prime}}{\mathbb{E}}\left(\hat{\boldsymbol{x}}_{i}-\hat{\boldsymbol{x}}_{j}\right)^{2} & \geq \alpha_{G W} \frac{1}{4} \tilde{\mathbb{E}}_{\mu}\left(\boldsymbol{x}_{i}-\boldsymbol{x}_{j}\right)^{2}, \\
\frac{1}{4} \sum_{(i, j) \in E} \underset{\mu^{\prime}}{\mathbb{E}}\left(\hat{\boldsymbol{x}}_{i}-\hat{\boldsymbol{x}}_{j}\right)^{2} & \geq \alpha_{G W} \frac{1}{4} \sum_{(i, j) \in E} \tilde{\mathbb{E}}_{\mu}\left(\boldsymbol{x}_{i}-\boldsymbol{x}_{j}\right)^{2} .
\end{aligned}
$$

Proving Sheppard's Lemma

Proof

We have Gaussians $\boldsymbol{g}_{i}, \boldsymbol{g}_{j}$, such that $\mathbb{E} \boldsymbol{g}_{\boldsymbol{i}} \boldsymbol{g}_{j}=\tilde{\mathbb{E}}_{\mu} \boldsymbol{x}_{\boldsymbol{i}} \boldsymbol{x}_{j}=\rho$, and $\mathbb{E} \boldsymbol{g}_{i}^{2}=\tilde{\mathbb{E}}_{\mu} \boldsymbol{x}_{i}^{2}=1$.
Procedure to generate such Gaussian vectors:
Let $\boldsymbol{v}, \boldsymbol{w} \in \mathbb{S}^{(2-1)}$ such that $\langle\boldsymbol{v}, \boldsymbol{w}\rangle=\rho$.
Take $\boldsymbol{h} \sim \mathcal{N}\left(\mathbf{0}, I_{2}\right)$.
$\hat{\mathbf{g}}_{i}=\langle\boldsymbol{h}, \boldsymbol{v}\rangle, \hat{\mathbf{g}}_{j}=\langle\boldsymbol{h}, \boldsymbol{w}\rangle$, this has same joint-distribution as g_{i}, g_{j}.
We are interested in:

$$
\mathbb{P}\left[\operatorname{sign}\left(\boldsymbol{g}_{i}\right) \neq \operatorname{sign}\left(\boldsymbol{g}_{j}\right)\right]=\mathbb{P}\left[\operatorname{sign}\left(\hat{\boldsymbol{g}}_{i}\right) \neq \operatorname{sign}\left(\hat{\boldsymbol{g}}_{j}\right)\right]
$$

Proof Cont...

$$
\begin{aligned}
\mathbb{P}\left[\operatorname{sign}\left(\boldsymbol{g}_{i}\right) \neq \operatorname{sign}\left(\boldsymbol{g}_{j}\right)\right] & =\mathbb{P}\left[\operatorname{sign}\left(\hat{\mathbf{g}}_{i}\right) \neq \operatorname{sign}\left(\hat{\mathbf{g}}_{j}\right)\right] \\
& =\mathbb{P}[\operatorname{sign}(\langle\boldsymbol{h}, \boldsymbol{v}\rangle) \neq \operatorname{sign}(\langle\boldsymbol{h}, \boldsymbol{w}\rangle)] \\
& =\frac{\arccos (\rho)}{\pi} .
\end{aligned}
$$

And the other quantity

$$
\begin{gathered}
\frac{1}{4} \tilde{\mathbb{E}}_{\mu}\left(\boldsymbol{x}_{i}-\boldsymbol{x}_{j}\right)^{2}=\frac{1}{4} \mathbb{E}\left(\boldsymbol{g}_{i}-\boldsymbol{g}_{j}\right)^{2}=\frac{1}{4} \mathbb{E}\left(\hat{\boldsymbol{g}}_{i}-\hat{\boldsymbol{g}}_{j}\right)^{2}=\frac{1}{2}(1-\rho) . \\
\quad \Longrightarrow \mathbb{P}\left[\operatorname{sign}\left(\boldsymbol{g}_{i}\right) \neq \operatorname{sign}\left(\boldsymbol{g}_{j}\right)\right] \geq \frac{2 \arccos (\rho)}{\pi(1-\rho)} \mathbb{E}\left(\boldsymbol{g}_{i}-\boldsymbol{g}_{j}\right)^{2} .
\end{gathered}
$$

MaxCut Approximation Done.

Can we do better?

1. Can we do better with degree-2 SoS?: No.
2. Can we improve it with degree-4, degree-6, ..., degree-log n SoS? Open.
How likely?
Unique Games Conjecture $\Longrightarrow\left(\alpha_{G W}+\varepsilon\right)$-approx to MaxCut is NP-Hard $\forall \varepsilon>0$ [Har +10 , Lecture 9].

- Corollary: Suppose $\operatorname{Opt}(G) \geq(1-\delta)|E|$, then Gaussian rounding gives $\mathbb{E}_{\mu^{\prime}} f_{G}(\boldsymbol{x}) \geq(1-\mathcal{O}(\sqrt{\delta}))|E|$.

3. Is this the most optimal rounding? No (RPR ${ }^{2}$ rounding does better in some regimes of δ [FL01]).

Integrality Gaps?

What's the largest c for which degree- 2 SoS certificate exists for $\frac{\operatorname{Opt}(G)}{c}-f_{G}(x)$?
Ans: $c=0.878$.. is optimal.

Fact

C_{n} : Cycle on n vertices, n odd.
$\operatorname{MaxCut}\left(C_{n}\right)=\operatorname{Opt}\left(C_{n}\right)=\left(1-\frac{1}{n}\right)|E|$.
Theorem
There is a p.d. μ of degree- 2 such that

$$
\tilde{\mathbb{E}}_{\mu} f_{C_{n}}(\boldsymbol{x})=\left(1-\mathcal{O}\left(\frac{1}{n^{2}}\right)\right)|E|
$$

Choose $n=\frac{1}{\delta}$, then $\operatorname{Opt}\left(C_{n}\right)=(1-\delta)|E|$, and $\mathrm{Opt}_{\mathrm{SoS}_{2}}\left(C_{n}\right) \geq 1-\mathcal{O}\left(\delta^{2}\right)|E|$.
\Longrightarrow Corollary for small δ is tight up to constant factors.

Cycle $=$ "Discretized" 2-dimn Sphere

$$
=\text { "Discretized" high-dimn Sphere }
$$

[Feige and Schechtman [FS02]] Proved $\alpha_{G W}$ is optimal.

Proof Sketch of Theorem

MaxCut $=\max _{\boldsymbol{x} \in\{-1,1\}^{n}} \boldsymbol{x}^{\top} L_{G} \boldsymbol{x}$.
Relaxation $=\max _{\|\boldsymbol{x}\|=\sqrt{n}} \boldsymbol{x}^{\top} L_{G} \boldsymbol{x}=n\left\|L_{G}\right\|_{2}$.

- How to construct such a degree-2 p.d.?
- Choose a distribution on \boldsymbol{x} that are in the "largest eigenspace" of L_{G}.
. We just need $\tilde{\mathbb{E}}_{\mu}(1, \boldsymbol{x})(1, \boldsymbol{x})^{\top} \succcurlyeq 0, \tilde{\mathbb{E}}_{\mu} \boldsymbol{x}_{i}^{2}=1, \tilde{\mathbb{E}}_{\mu} 1=1$.

1. Idea: $\lambda \max \left(L_{G}\right)=1-\mathcal{O}\left(1 / n^{2}\right)$. It is not Boolean because maxcut is $(1-\mathcal{O}(1 / n))|E|$. Top eigenspace is 2-dimensional with vectors $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}$.
2. set $M=\tilde{\mathbb{E}}_{\mu} \boldsymbol{x} \boldsymbol{x}^{\top}=\boldsymbol{v}_{1} \boldsymbol{v}_{1}^{\top}+\boldsymbol{v}_{2} \boldsymbol{v}_{2}^{\top} \succcurlyeq 0$.
3. Moreover, $\boldsymbol{v}_{1} \boldsymbol{v}_{1}^{\top}+\boldsymbol{v}_{2} \boldsymbol{v}_{2}^{\top}$ has diagonal entries 1 .
4. Therefore, this is a valid pseudo-expectation.

References I

[FL01] Uriel Feige and Michael Langberg. 'The RPR2 Rounding Technique for Semidefinite Programs'. In: Automata, Languages and Programming. Ed. by Fernando Orejas, Paul G. Spirakis, and Jan van Leeuwen. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001, pp. 213-224 (cit. on p. 18).
[FS02] Uriel Feige and Gideon Schechtman. 'On the Optimality of the Random Hyperplane Rounding Technique for Max Cut'. In: Random Struct. Algorithms 20.3 (2002), 403-440 (cit. on p. 20).
[Har+10] Prahladh Harsha et al. Limits of Approximation Algorithms: PCPs and Unique Games (DIMACS Tutorial Lecture Notes). 2010. arXiv: 1002.3864 [cs.CC] (cit. on p. 18).
[CLRS16] Siu On Chan, James R. Lee, Prasad Raghavendra, and David Steurer. 'Approximate Constraint Satisfaction Requires Large LP Relaxations'. In: 63.4 (2016). arXiv: 1309.0563 [cs.CC] (cit. on p. 4).

